How to derive Derivation of Young–Laplace equation in Surface Chemistry. (Pα- Pβ) = 2γ/r



In this video, I had easily explained about How to derive the Derivation of Young–Laplace equation in Surface Chemistry. (Pα- Pβ) = 2γ/r

To watch the full video on YouTube


In physics, the Young–Laplace equation (/ləˈplɑːs/) is a nonlinear partial differential equation that describes the capillary pressure difference sustained across the interface between two static fluids, such as water and air, due to the phenomenon of surface tension or wall tension, although use of the latter is only applicable if assuming that the wall is very thin. The Young–Laplace equation relates the pressure difference to the shape of the surface or wall and it is fundamentally important in the study of static capillary surfaces. It is a statement of normal stress balance for static fluids meeting at an interface, where the interface is treated as a surface (zero thickness):

The equation is named after Thomas Young, who developed the qualitative theory of surface tension in 1805, and Pierre-Simon Laplace who completed the mathematical description in the following year. It is sometimes also called the Young–Laplace–Gauss equation, as Carl Friedrich Gauss unified the work of Young and Laplace in 1830, deriving both the differential equation and boundary conditions using Johann Bernoulli's virtual work principles.